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FOREWORD

This report covers research conducted for the National Aeronautics

and Space Administration under Contract NASr-IL5. The report consists of

three main areas of research activity namely: (i) fatigue studies of

single crystal beryllium (ii) microstrain behavior of single crystal

beryllium (iii) effect of thermal-mechanical and surface treatments on

the flow and fracture of beryllium. Dr. A. Lawley and Dr. J. F. Breedis

were responsible for the fatigue and micro strain studies, while Dr. K.U. Snowden

directed the studies on thermal-mechar_cal and surface effects. F. Wilhelm,

J. A. Zeiger, and W. D. Hepfer assisted at various periods of time throughout

the investigation.

Alan Lawley, Manager
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Approved by:
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SECTION I

FATIGUE STUDIES OF SINGLE CRYSTAL BERYLLIUM

ABSTRACT

Transmission electron microscope studies have been made of the

dislocation arrangements in zone-refined Pichiney beryllium oriented for

basal or prism slip following fatigue at room temperature. Fatigue modes

include (i) reverse bending at 1800 cpm (ii) low frequency (_ 2 cpm)

uniaxial tension or compression cycling. The surface slip structure in

bend fatigue was examined optically and also by using high resolution

silicon monoxide replicas.

A persistent slip structure develops to a depth _ 6_ in both

basal and prism slip orientations and bend fatigue. The persistent markings

correspond to closely spaced depressions or pits on the crystal surface and

are parallel to (OOO1) for basal slip, or (O001) and (O_lO) in prism slip.

The basal slip bend fatigue substructure is characterized by a high density

of prismatic loops elongated in a direction perpendicular to each of the

three a/3 < _llO _ slip vectors; a majority of these loops are elongated

perpendicular to the favored a/3 _ll07 slip vector. The loops have a

Burgers vector 1/6 _ll_3_ or 1/3 _ll_O_ so that they do not contain

stacking faults. Axial fatigue gives rise to a relatively uniform dislocation

substructure of edge and screw components and prismatic dislocation loops on

the operative slip plane.

After prolonged examination in the electron microscope, recovery

of the bend fatigue substructure occurs with a significant lowering of the

dislocation density. In order to obtain similar effects in foils following

axial fatigue, it is necessary to heat the foil in the microscope above lOO°C.

Annealing experiments (lO0°C to 300°C for 1 hour periods) on bulk crystals,

oriented for basal or prism slip in bend fatigue serve to show that the

recovery effects following bend fatigue are restricted to thin foils.

-1-
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I. INTRODUCTION

The deformation behavior of beryllium under conditions of cyclic

loading has been largely neglected. Our current knowledge of fatigue in this

material is restricted to a small number of conventional S-N plots for

commercial grades. Wallace and Wallace (1) report an endurance limit _ 31,000 psi

for polycrystalline hot pressed and warm extruded material in axial tension-

compression. In the temperature range 550°C to 650°C, the hot-pressed and

extruded beryllium shows no true endurance limit up to lO8 cycles (Vickers(2)),

and the fractures are intergranular. More recently, Klein et al(3) have

obtained improved bend fatigue strength (endurance limit _ _0,000 psi) in

QMV beryllium sheet which was produced by vacuum hot working.

Several studies have been aimed at an understanding of plastic

flow in beryllium through direct observation of glide dislocation configura-

tions. These include the examination of both po_vcrystalline (_'5) and

single crystal(4, 6) beryllium covering a wide range of purities. No

studies of this nature have been reported involving cyclic loading; in fact,

only a limited number of electron microscope observations have been made

on fatigued hexagonal close-packed metals, and these refer to magnesium (7)

and zinc (8). In these instances, the deformation structure is similar to

that of the face-centered cubic metals copper and nickel (9) following

fatigue. Dense bundles of elongated edge dipoles are observed in the

active slip plane with a direction of elongation <lO_O_ normal to the

Burgers vector. There is a relative absence of dislocations having a large

screw component, and the dislocation density between bundles is extremely

low.

In the present investigation high purity single crystals of

beryllium, oriented for basal or prism plane slip, have been plastically

deformed under conditions of bending and axial fatigue. The associated

dislocation configurations and surface slip structures are compared with

those reported by Damiano and Herman (6) for material of comparable purity

deformed in simple tension. Recovery behavior of the fatigue structure has

been examined in both thin foils and bulk material.

-- 2 --
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!I. EXPERIMENTAL PROCEDURE

a. Specimen Preparation: Single crystals of beryllium were grown

from 0.5" dia. Pechiney secondary refined vacuum-cast and extruded stock

using the floating zone melting technique developed by Spangler et al(lO).

Crystals received three zone passes, and specific orientations were obtained

by seeding. All the necessary shaping operations were performed by low

energy, spark discharge machining. Prior to fatigue testing, specimens

were given a final electropolish in a solution of 50 parts ethylene glycol,

5 parts concentrated nitric acid, 1 part concentrated sulphuric acid, and

1 part concentrated hydrochloric acid, using a potential of 15 volts. The

geometry and dimensions of the specimens are illustrated in Figure 1-1. For

compression fatigue, the specimens were cylinders of height 0.58" and

diameter 0.30"• The crystallographic code for the Planes A and B, and the

angle _ is given in Table l-I- The shape of the bend fatigue specimen is

such that the bending stress is approximately constant along the length of

the crystal.

b. Fatigue Testify: Bend fatigue tests were made in a Sonntag SF-2-U

machine at 1800 cpm. Crystals oriented for basal slip were subjected to

reverse bending about a mean zero stress so that the upper and lower surfaces

(Figure l-_a)were alternately in tension and compression. For the prism slip

orientation, compressive stresses lead to twinning on [10_2] planes.

Accordingly, the crystals were fatigued in simple bending whereby the upper

surface is subjected to only cyclic tensile stress, and the lower surface

to only cyclic compressive stress. For the two crystal orientations studied,

the load was increased incrementally to a level at which the resolved shear

stress on the basal or prism slip system at the bend surface exceeded the stress

required for plastic flow. These critical resolved shear stresses (in tension)

are _ 860 psi and _ 7900 psi for basal and prism slip respectively. As a

guide to the behavior of single crystal beryllium in cyclic bending, crystals

of each orientation were subjected to _ 5 x lO6 cycles without fracture at

a resolved shear stress level approximately three times that required for

basal or prism slip.

-- 3 --
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Table I-I

CRYSTALLOGRAPHIC CODE FOR FATIGUE CRYSTALS

Fatigue Mode Plane Code @ Favored Slip System

(A)
Reverse Bend (0_I0) (0001) /+3°

Simple Bend (0001) (O_lO) /+8°

Cyclic Compression (O[lO) (0001) 70 °

Cyclic Tension (0001) (O_10) /+8 °

(OOOl) I/3 [ lOl

(OilO) 1/.3 [i-LlO ]

(0001) 1/.3 [ n03

(0 0) 1/.3 [ llO

Low frequency (--2 cpm) tensile and compressive axial fatigue

tests were made in a straining jig located between the fixed and moving

crosshead of a standard Instron machine. Details of the complete assembly

are described elsewhere (ll). It should be emphasized that the jig was

designed for studies of the microplastic strain region in materials

lO-6),(_/_ --_ so that extremely accurate alignment of the specimen axis

and stress axis is possible. The compression and tension fatigue damage

was induced under conditions of constant strain amplitude at the macroscopic

yield stress. In both compression and tension fatigue, the resolved glide

strain on the basal and prism slip systems, respectively was 0.0015 per cycle

for a total of /+5 cycles.

c. Electron Microscopy: Initially, the fatigued crystals were

examined under the light microscope for slip lines. High resolution replicas

were then prepared from the original as-fatigued bend surface or after

electropolishing to a controlled depth using the method of Grube and Rouze (12).

A water soluble agent, Victawet 35B, is first evaporated onto the beryllium

surface followed by evaporation of SiO. In this way the replicas can be

removed from the surface by immersion in distilled water. Replicas were

shadowed with tungsten oxide prior to examination in the electron microscope.

Thin foils suitable for transmission electron microscopy were

prepared from slices of selected orientation using the jet polishing technique

-- 5 --
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followed by a final electropolish in the ethylene glycol-acid solution.

The slices were cut from the bulk crystal using the low energy, spark

discharge method. The foils were examined in transmission in a Philips

1OOB electron microscope operating at either 80 KV or 100 KV. Selected area

electron diffraction was used to index directions in the plain of the foil;

as a further check on orientation, a standard back reflection x-ray Laue

photograph was taken with the foil in the microscope holder, prior to

examination in the microscope. Burgers vectors were studied using specific

diffraction contrast conditions.

-6-
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III. EXPERIMENTAL RESULTS

The experimental observations are conveniently summarized under

three groupings, namely (a) the basal slip condition in bend and axial fatigue

(b) the prism slip condition in bend and axial fatigue (c) recovery of the

fatigue substructure.

a. Crystals Oriented for Basal Slip

Bend Fatigue Observations: Consideration is given first to the

crystals of basal slip orientation fatigued in the reverse bend mode. A

representative light micrograph and electron micrograph of the replicated

as-fatigued surface are illustrated in Figure 1-2. Geometrically, the

surface of observation in both the micrographs corresponds to the point of

emergence of edge dislocations having a Burgers vector 1 [_llO] (refer to

Figure l-l). Thus, the slip traces are parallel to [Ol_O] which is the

line of intersection of the basal plane and the surface of observation.

Slip has occurred over the entire gauge section, and in the central region

away from either grip is on a relatively fine scale. In regions adjacent

to the grips, deeper slip steps are frequently observed, indicating that

stress concentrations exist in these regions. From a detailed examination

of the surface replicas, no activity on other systems such as those involving

the prism plane was observed.

Further insight into the detail of the slip structure is obtained

by electropolishing to controlled depths below the outer bend surface. In

Figure 1-3, electron micrographs of the replicated surface are shown after

removal of _ 6_ layer from the bend surface; this crystal was given 2 x lO 6

cycles at a stress of 3_60 psi. From the known direction of shadowing of

the replicas, the rows of persistent markings are found to correspond to

closely spaced depressions or pits on the crystal surface, parallel to the

trace of the (O001) slip plane. After this examination, a further _u was

removed from the bend surface, at which depth there was no evidence of ar_

persistent slip structure.

-7-
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I -  

Fig.  1-2 - ( a )  Optical  Micrograph of t k e  S l i p  Sand S t ruc ture  a$ t h e  Surface 
of t h e  Bend FatigLe Crystal near  t h n  Grip. 
x200. 

(b)  Swface  Replica from Region Close t o  Grip. 

Basal S l i p  Orientation. 

Preparat ion o f  transmission f o i l s  by t h e  j e t  pol ishing technique 

allows f o r  observation a t  varying depths below t h e  surface of maximm bending 

stress. 

f ined  t o  a depth <50p from t h e  outer surface.  

t h e  d i s loca t ion  subs t ruc ture  from region t o  region. 

Figure 1-4 summarize these  var ia t ions .  

of t h e  f o i l  i s  very near ly  (2113) h5th t h e  b a s a l  plane a t  an i n c l i n a t i o n  of  

43" from t h e  f o i l  plane. 

condi t ions,  it was es tab l i shed  tha t  many o f  t h e  d i s loca t ions  v i s i b l e  i n  

I n  t h i s  way, it w a s  determined t h a t  t h e  bend f a t i g u e  darnage i s  con- 

Di s t inc t  d i f f e rences  exist i n  

The configurat ions i n  
I n  each of t h e  micrographs, t h e  plane 

By t h e  use o f  se lec ted  d i f f r a c t i o n  con t r a s t  

Figure 1-4a do not belong t o  t h e  preferred (0001) - 1 [%lo1 s l i p  systan. 

a r e f l e c t i o n  f o r  h%ich (g.b)s i s  zero -&Len t h e  DVgers vector  i s  - 1 [%O>. 

3 
Speci f ica l ly ,  strong cont ras t  conditions e x i s t  using t h e  [Ol io ]  r e f l ec t ion ,  

3 

- 8 -  



Fig.  1-3 - Pers i s t en t  Narkings of Closely Spaced P i t s  P a r a l l e l  t o  t h e  Trace 
of t h e  (0001) Plane. 
Electropol ished from t he  Cuter Bend Surface. 

S i s  t h e  d i r ec t ion  of shadowing. - 6u 

- 9 -  



Fig. 1-4 - Dislocat ion Subs t ruc t -me  Close t o  t h e  Send Surface t~ a Crystal 
Oriented for Basal S l i p  i n  Bend Fatigue.  Plane of F o i l  i s  (2113). 

- 10 - 
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This implies the presence of dislocations on the basal plane having a

vector of either _ [l_107 or _ [ll_O_.Burgers

The slip band structure in Figure 1-&(a) is considered to arise

from a rearrangement of the original fatigue substructure on thinning. It

is seen that essentially all the dislocations (whoseBurgers vectors do not

necessarily correspond to the primary slip direction) are arranged with a

mininmmlength through the foil on the inclined (OOO1)slip plane. The
foil thickness in this case, as determined from the projected dislocation
lengths, varied from _ 1000Ain the center of the micrograph to _ iO00A in

the upper left-hand corner. Recovery processes actually observed in thin

foils in the electron microscope are considered in detail in a subsequent
section.

Dislocation loops are seen in Figures 1-&b and 1-&c. In projection,
the loops are nearly circular or highly elongated along the [Ol_O] direction.

The projected shape of the small loops is compatible with their lying on

planes inclined to the foil surface, and containing the [O_lO_ direction.

Two such planes are the (O001) plane and the (_llO). Since these planes are

equally inclined (_ &5°) to the foil surface, it would be necessary to

perform a tilting experiment to distinguish between these possibilities. For
an average loop diameter of 250 A, the loop density approaches 1015 cm-3 .

The dislocation networks depicted in Figure 1-&d constitute a
fourth type of dislocation substructure. The networks form extensive

boundaries and presumably lie on the basal plane. In agreementwith earlier
observations (A'6), the nodes within the networks are not visibly extended.

This is consistent with the supposedrelatively high stacking fault energy
of beryllium.

Axial Fatigue Observations: The axial compression fatigue

specimens oriented for basal slip were given a total glide strain of 0.07.

Thin foils were prepared from slices cut parallel to the basal plane, and

also parallel to the (OleO) prism plane which contains the preferred shear

direction [_ll07. In each instance, the foils were obtained from interior
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regions of the fatigued crystals. In contrast to bend fatigue damage,only
minor variations in the dislocation substructure occur from region to region;

Figure 1-Sa maybe considered representative of the dislocation structure

existing on the basal plane after axial compression fatigue. Characteristic
features include: three-fold nodes, angular dislocations by virtue of

pinning effects, and a broad spectrum of dislocation loop shapes and sizes.
Elongated loops have a direction of elongation along one of the three possible
<lOgO>directions in the basal plane.

The operative reflection (g = ll_O) in Figure 1-Sa gives rise to

diffraction contrast for all dislocations having Burgers vectors of the form
l_ <ll_0>. The dark field micrographs Figures 1-Sb and 1-5c, use two prism
3
plane reflections. These produce conditions of zero contrast intensity for

all line and loop dislocations ha_ing a _argers vector in the reciprocal

lattice plane normal to the respective prism plane directions. Therefore,

line dislocations in the basal plane having a vector _ [ll_0] or [I 107

can be made extinct using either the _lO0 or lOgO reflections, respectively.

Comparison of the bright field micrograph Figure 1-Sa (g = ll_O) with the

pertinent dark field micrographs (1-Sb and 1-5c) makes it clear that the line

dislocations marked (A) become extinct using the _lO0 reflection, Figure 1-Sb.

Dislocations marked (B) are extinct with the 10_O reflection, Figure 1-5c.

Since E b. = O, and there are only two independent Burgers vectors in the
m 1

basal plane, the leg (C) of the node ABC must be +_ _ [_ll07. The elongated

dislocation loop marked (1) is extinct only when the lOgO reflection is

operative; this is also the direction of elongation, suggesting that the

vector is either 1 [l_lOl, or a lattice vector out of the basal planeBurgers

but normal to this prism direction. In the former case, the loop would be

an edge dipole. The small, nearly circular dislocation loops are extinct

when using one of the three possible prism reflections. For example, the

cluster marked (2) is extinct only when using the _100 reflection. By a

similar argument as that used for the elongated loop (1), the Burgers vector

be either 1 [ll_0], or be out of the plane of the loopof these loops can

but still normal to the [_lO0] direction. It is certain that both the

- 12 -



Fig.  1-5 - Light and Dark F i e l d  Nicrographs of t h e  Dislocat ion Su’cstructwe 
Crystal Oyiented f o r  Basal - r ollowing Axial Coxpression F a t i e e .  

S l ip .  
Reflect ions are: 1123, I l D C ,  1010, 2110, i n  a ,  b, c y  d, respec t ive ly .  

F o i l  P l m e  is-(O0~1) in a, b,-c, and (0110) in d. Operative 
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elongated and circular loops do not have a Burgers vector 2l-[O001_, since

they appear in strong contrast whenusing reflections from planes normal

to the basal plane.

The observations on loops in the bend fatigue-basal slip

crystal could not distinguish whether the plane of the loop was (O001)

or (_llO). However, since 'open' loops are seen in the foils having a

basal plain orientation (Figure 1-5a,b,c), the {_llO] planes are eliminated

as these lie perpendicular to the basal plane. Thus, the most likely plane

for the loop is the basal plane. As a further check on the loop plane

slices were taken parallel to the prism plane containing the shear direction
[_llO_. Therefore, the actual basal slip plane is viewed end-on, and any

dislocation loops in this plane should appear as short single lines. The

slices were taken from part of the samecrystal as that represented by the

micrographs in Figures 1-5a through 1-5c. A dark field micrograph of the prism

plane slice where the 2110 reflection is responsible for contrast is
included as F_gure_ The bands of high dislocation density on the

micrograph correspond to the basal plane trace. The large numbersof

nearly circular dislocation loops seen clearly in the basal plane slices

are no longer resolvable, indicating that they do in fact lie on the basal

plane.

b. Crystals Oriented for Prism Slip

Bend Fatigue Observations: Bend fatigue crystals oriented for

prism slip on the (O-110) 1/3 [_I107 system were subjected to fatigue in simple

bending in the range 3 x lO5 to 5 x lO6 cycles with resolved shear stresses

up to 23,000 psi. The slip structure and dislocation configurations were

then examined on the tension surface.

The fatigue damage on the surfaces subjected to maximum bending

stress was characterized by the formation of a pronounced duplex slip

structure, and by a distinct brownish dislocation, the intensity of which

increased with increasing number of cycles. The discoloration was confined

to the two surfaces through which edge dislocations having the 1/3 _ll07

Burgers vector emerge. The intense slip bands are associated with the

-- i_ --
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preferred prism slip system, but there is ample evidence of cross slip

on the basal plane where the resolved shear stress is very small. This

surface structure is illustrated in Figure 1-6 for a crystal given

5 x lO6 cycles at a resolved shear stress of 22,950 psi. The duplex slip

structure is accompanied by the appearance of fracture lines which run across

the bend surface; the overall direction of these fissures corresponds to

[OOOl_, the direction of intersection of the prism plane with the bend

surface. The structure shown in Figure 1-7 is that obtained on a crystal

subjected to 3 x lO5 cycles at a lower stress (8250 psi). It should be

noted that no surface discoloration developed under conditions of bend

fatigue when the slip was confined to the basal plane. As in the bend

fatigue basal slip crystals, repeated polishing and replication has revealed

the presence of persistent slip bands to a depth of at least 5_. From the

known direction of shadowing, all the persistent slip traces correspond

to intrusions on the surface of the crystal; as in basal slip-bend fatigue,

the intrusions are in the form of rows of closely spaced pits. For the

crystal fatigued 5 x lO6 cycles at the high resolved shear stress (22.950 psi)

on the (O[lO) 1/3 [_llOG slip syst_n, the persistent bands are seen on both

the prism and basal planes, Figure 1-8. On crystals given a lower

number of cycles at a lower resolved shear stress on the prism slip plane,

the persistent slip bands are seen only on the prism plane trace, Figure 1-9.

The transmission electron micrographs prepared close to the tension

surface after bend fatigue are characterized by the presence of relatively

long straight dislocations; the projected direction of these dislocations

in the plane of the foil coincides with the basal plane trace, Figure 1-10.

These micrographs (and the corresponding micrographs of the recovered structure,

considered in a subsequent section) are of particular interest in that the

operating reflection was 0002, so that g.b is zero for all three a/3 <_llO>

slip vectors. Under these conditions, all screw dislocations are invisible,

but edge dislocations give some contrast intensity due to displacements in

a direction normal to the slip plane tl3"). This means that dislocations such

as those visible in Figure 1-10 have a large edge component, and must be in

the basal plane which in this orientation is perpendicular to the plane

of the foil.
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Fig. 1-6 - Optical  Microgaphs of t h e  Surface S l i p  S t ruc tu re  i n  Bend 
Fatigue-Prism S l i p  Orientation. 
Fatigued and Eiectropolished t o  a depth - 5cl. 
a t  a Resolved S t r e s s  of  22,950 p s i .  

( a )  as Fatigued ( b )  gnd ( c )  
5 x 10 Cycles 

All IJlagr-ifications X300. 
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Fig. 1-7 - Opt ica l  Nicrographs of t h e  Surface S l i p  S t ruc tu re  irl Bend 
Fatigue-Prism S l i p  Orientation. 
( d )  Fatigued and Electropolished t o  a depth - 21.1. 
at a Resolved S',ress o f  8250 p s i .  
(b) X 480 ( c )  X 100 (6) X 480. 

( a )  and (b )  as Fatigued bc) and 
3 x 10 Cycles 

Kagnifications:  ( a )  X 480 
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Fig.  1-8 - Replicat ion of Bend Fz5igue-Prism S l i p  Crys ta l  After Removal of 

5 x 106 Cycles a t  
- 51-1 from Bend Surface. Note t h a t  t h e  Rows o f  P i t s  Show Dark 
Contrast Towards t h e  E r e c t i o n  of Shadowing. 
Resolved S t r e s s  of 22,9521 p s i .  

Axial Fatigue Observations: The axial  f a t i g u e  specimens or ien ted  

f o r  prism s l i p  were given a t o t a l  g l ide  strain of 0.07. I n  t h i s  ins tance ,  

t h e  t h i n  f o i l s  were prepared from s l i c e s  cut p a r a l l e l  t o  t h e  ( O l i o )  prism 

plane, and a l s o  p a r a l l e l  t o  t h e  basal  plane w-hich contains  t h e  [ZllO] shear 

d i rec t ion .  I n  cont ras t  t o  t h e  long s t r a i g h t  p r i m  s l i p  bands seen after 
bend fa t igue ,  t h e  s l i p  s t r u c t u r e  following f i f t y  cycles  of low frequency 

t ens ion  f a t i g u e  i s  character ized by r e l a t i v e l y  shor t  prism s l i p  t r a c e s ,  

and connecting cross-s l ip  t r a c e s  on t h e  b a s a l  plane (Figure 1-lla). The 

f i n e  d e t a i l s  of t h e  in t ense  prism s l i p  bands a r e  resolved by r e p l i c a t i o n  

of this surface (Figure 1- l lb) .  

but  l e s s  i n t ense  s l i p  s t r u c t u r e s  i n  i d e n t i c a l l y  or ien ted  c r y s t a l s  a f t e r  a 
comparable amount of shear s t r a i n  i n  simple tension.  

Ganiano and Herman(6) have observed similar 
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Fig.  1-9 - Surface Replica Xlectron Micrographs Showin Pers i s ten t  Prism 

Bending a t  a Resolved S t r e s s  of 8150 ps i ,  and Electropolished 
t o  a Depth - 21-1. 
Plane S l i p  Traces. Crystal  Fatigued 3 x 10 9 Cycles i n  Simple 
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Fig.  1-10 - Dislocation Substructure Close t o  t h e  Bend (Tension) Surface 
Plaiie LI a Crystal Oriented f o r  P r i s m  S l i p  in end r ’ a t i e e .  

of F o i l  i s  (ci-50). Crystal Given 5 x 10 Cycles a t  a Resolved 
S t r e s s  of 22,950 ps i .  

Fig.  1-11 - (a )  Optical  Micrograph Showing P r i s m  and Basal Plane Slip. 
Axial Tensile Fat igue i n  Crystal Oriented f o r  prism s l i p .  
( b )  Corresponding S l i p  S t ruc ture  by Surface Repl icat ion.  

X 3 O O .  
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Flgi;re 1-12a,b Il l=lstrates t h e  f a t i g x e  damage on t h e  opera t ive  

prism plane, ayd cn t h e  b a s a l  plane, following axial t e n s i l e  cycling. 

was obsemed t h a t  iz t h e  prim plane f o i l  o r i e n t a t i o n  open d i s loca t ion  

loops were absent. 

b a s a l  plane (Figure 1-125) i s  similar t o  t h a t  observed after axial compression 

f a t i g u e  or? cyys ta l s  or ien ted  f o r  basal  s l i p  o n l y ,  F i g n e  1-52. 
l engths  of t h e  d is loca t ions  v i s i b l e  i n  Figure 1-12b demonstrate c l e a r l y  t h a t  

It 

The appearance of t h e  d i s loca t ion  subs t r -x tu re  on t h e  

The long 

s l i p  has  occurred on t h e  b a s a l  plane; i n  t h i s  case this i s  t h e  cross-s l ip  

Fig.  1-12 - Dislocation Substructure Following Axial Tensi le  Fat igue i n  
( a )  Plane of F o i l  ( O i l O ) ,  Crys ta l  Oriented f o r  P r i s m  S l i p .  

Operative Reflection 2110. (b )  Plane of F o i l  (0001). 

plane which has a l o w  resolved component of shear s t r e s s .  

d i s loca t ion  loops (arrowed) seen on t h e  b a s a l  plane s l i c e  can 1: l e  on any 

of t h e  poss ib le  prism planes o f  type ClOiO] or h l ? O ] ,  s ince  these  a r e  

perpendicular t o  t h e  plane c f  t h e  f o i l .  

t h e  [O l i o?  d i r e c t i o n  which i s  noma1 t o  t h e  cpera t ive  Eurgers vector ,  
1 rz-- 
3 
f r o m  t h e  i r k r a c t i o n  of g l i d e  d is loca t ions  on t h e  two  systems; i n  common with 

o the r  mui t ip le  s l i p  conditions,  t h i s  r e s u l t s  i n  a complex d i s loca t ion  

network. 

Xone of t h e  open 

Kany o f  t h e  loops a r e  elongated i n  

I~LLO]. Tne substructure  seen o n  t h e  prism plane (Figure 1-12a) a r i s e s  

c 2: b 



F-B2028-1

c. Recovery of the Fatigue Substructure

(i) Recovery in Thin Foils in the Electron Microscope:

After prolonged examination of a bend fatigue crystal Cbasal

slip orientation) in the electron microscope (_ 30 minutes), a most

interesting sequence of events was observed which constitutes recovery

in the transmission foil. The dislocation substructure of the fatigued

state CFigure 1-_a) gave way to the sequence of configurations shown in

Figure 1-13a through 1-13d. Dislocations are frequently seen to move over

distances of several microns on the basal plane, inclined at _ _3 ° to the

plane of the foil. This motion gives rise to persistent traces of dark

spots parallel to the line of intersection of the basal plane with the upper

and lower foil surfaces (Eq. A in Figure 1-13a). Instances of dislocation

motion are also evident in which the displacement is not confined to the

basal plane. Under these circumstances, the point of emergence of the

moving dislocation line describes a wavy path (Eq. B in Figure 1-13a). This

form of configuration can be rationalized in terms of successive glide on

the basal plane, and cross slip of the screw component of a [lO_O] prism

plane having a common <_ll0> slip direction. It has been established

(Figures 1-_ and 1-5) that all three _llO> Burgers vectors do in fact

operate in the basal plane. The prominent dislocation loops generally

increase in size with only small lateral mov_nent, although examples of

decreasing size leading to disappearance of the loop have been found.

Consideration of Figure 1-13 shows that the loops marked 1 through 8 increase

in size with increasing time of exposure in the electron microscope. Loops

i and 2 eventually combine, and loops 3, _, 6 and 8 have moved completely

out of the foil. The loss of a loop from the foil is accompanied by a

'ghost' image which lasts for several minutes. In terms of the time scale,

once the sequence of events had started, individual loops changed size and moved

out of the foil in a matter of seconds. A period _ 5 minutes was required to

complete the recovery process such that the foil was completely devoid of

glide dislocations and prismatic loops. Several such foils were found to

recover in this way on prolonged examination in the electron microscope.

- 22 -
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Fig .  1-13 - Sequence of Recovery Events i n  Crystal Original ly  Deformed i n  
Bend F a t L e e .  Basal S l i p  Orientat ion.  P h ? e  of F o i l  (21131, 
with [0l10] t h e  l i n e  of i n t e r sec t ion  of t h e  b a s a l  plane with 
t h e  f o i l  s w f a c e .  
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A s k A l a r  r e c o v e q  process ccc-cred  i n  f c i l s  prepared from t h e  

bend f a t i g u e  c r y s t a l  o r ien ted  f o r  prism plane s l i p ,  Figure 1-1L; t h e  process 

involves  similar t imes of exposure i n  t h e  e lec t ron  microscope followed by 

comparable rates of  prismatic loop motion. 

on t h e  b a s a l  plane s ince t h i s  i s  normal t o  t h e  f o i l .  

shapes seen i n  Figure 1-14 are due t o  c i r c u l a r  loops ly ing  on a plane 

inc l ined  t o  t h e  f o i l  surface,  t h e  plane has t o  be one of t h e  pyramidal 

planes of t h e  beryll ium l a t t i c e .  

The h o p s  de f i rL te ly  do not l i e  

If t h e  projected loop 

Fig.  1-lf+ - Recovered S t r u c t w e  in Crystal Orig ina l ly  Deformed i r ~  Bend 
Fatigue - P r i s m  S l i p  Orientat ion.  

It was not poss ib le  t o  promote recovery i n  t h e  c r y s t a l s  

subjected t o  axial f a t i g u e  deformation, even though t h e  times and i n t e n s i t y  

of exposure i n  t h e  e lec t ron  miciroscope were increased. 

from one of  t h e  a x i a l  compression fa t igue  c r y s t a l s ,  orie-n-ted f o r  b a s a l  s l i p ,  

was s e t  i n  a heating s tage  i n s i d e  the e l ec t ron  rriicroscope. 

range 100-2OO0C, rapid ;notion o f  gl ide dislocations was observed along with 

t h e  annih i la t ior ,  o r  growth of prismatic loops. 

d i s loca t ion  dens i ty  became extremely low. 

However, a f c i l  

I n  t h e  temperature 

Above - 300OC t h e  o v e r a l l  
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(ii) Recovery in Bulk Crystals:

Since recovery of the bend fatigue substructure occurs in thin

foils after prolonged observation in the electron microscope, the

question arises as to whether (i) this phenomenon is restricted to thin

foils, or (ii) does recovery also take place to this extent in bulk fatigued

beryllium at relatively low annealing temperatures as a consequence of the

extremely localized and intense deformation in the surface layers? In

order to answer this question, further crystals oriented for basal and prism

plane slip were cycled in bend fatigue. Pieces of the bulk fatigue crystals

were then annealed for 1 hour at temperatures of lO0°C, 200°C, and 300°C

(a separate specimen of each orientation was used at each temperature).

After annealing in the bulk condition, thin foils were prepared close to

the original bend surface.

Representative micrographs prepared close to the bend surface

in the basal slip orientation are assembled in Figure 1-15. It is clear

that annealing the bulk fatigued crystal for 1 hour at 100°C does not bring

about the recovery processes seen directly in thin foils of the fatigued

material in the electron microscope (the temperature of the foil while under

examination in the microscope is estimated to be _ _O°C). Although annealing

at lOO°C in bulk fatigued crystals has no effect on substructure, a similar

treatment at 300°C gives rise to a rearrangement of dislocations and a

lowering of the dislocation loop density, Figure 1-15c,d.

The most predominant feature of the as-fatigued substructure is the

high density of prismatic dislocation loops elongated in a direction

perpendicular to the favored a/3 _llO] slip direction. Similar loops are

present, elongated in a direction perpendicular to the other two a/3 <_llO>

slip vectors, but the density of these is much lower. These sets of loops

provide strong evidence for the jogging of screw dislocations by cross-slip

from the basal to the prism plane.

Similar conclusions on the recovery behavior are to be drawn from

the annealing experiments on bulk crystals following bend fatigue in the

prism slip orientation. The corresponding sequence of micrographs is

given in Figure 1-16a,b,c,d.
- 25 -



Fig. 1-15 - Dislocation Substructure Close t o  t h e  Bend Surface in a Crystal 
Oriented for Basal S l i p  in Seed FatigAe. 
( a )  as Fatigued (b) fatigued + 1 hour a t  100°C ( c )  and ( d )  
Fatigued + 1 hour a t  300°C. 
Pr ior  t o  Thinning. 

Plane of F o i l  i s  (2113). 

Crystals Annealed i n  Bulk Condition 
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Fig. 1-16 - Dislocat ion Substructure Close t o  t h e  Bend (Tension) Surface in 
a Crystal Oriented for P r i s m  S l i p  i n  Bend Fatigue.  
i s  (4i50). 
( e )  Fatigued + 1 hour a t  20OoC (d )  Fat,igued + 1 hour a t  300°C. 
Crys ta l s  Annealed i n  k i k  Condition Prior t o  Thinning. 

Plane of F o i l  
( a )  as Fatigued ( b )  Fatigued + 1 hour a t  100OC. 
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IV. DISCUSSIONAND_Y

(a) Reliability of the Observation

In considering the dislocation substructure following bend and

axial fatigue, it is important to be aware of any possible dislocation

rearrangement processes. These may occur during the preparation of the

foil, or in the course of the observations in the electron microscope,

as has been established for the bend fatigue foils. The extent to which

the configurations are modified during thinning depends on the material.

For aluminum, it is necessary to prepare foils > 200OA in thickness in

order to avoid rearrangement Ill)"while the corresponding value in molybdendum _15"
)

O

is _ 8OOA. Experience with tapered foils of beryllium has shown that

modification during thinning can occur in areas of the foil _< _000_

in thickness, as shown in Figure 1-&a. A majority of the foils examined

were of this thickness and, except where specifically noted, the dislocation

configurations are considered to be representative of the bulk fatigued

substructure without rearrangement. The stability of the substructure in

the foil within the microscope, is obviously related to the magnitude of

the energy stored in the lattice by virtue of the fatigue damaged. Specimens

prepared from the surface layers of crystals subjected to bend fatigue are

most susceptible to recovery processes due to the high level of strain in

these regions. In comparison, a uniform distribution and lower level of

strain exists following the axial fatigue tests. Recovery processes are

less likely to occur in these cases at ambient temperature; heating of the

foils in the electron microscope to temperatures _ lOO°C did in fact

promote recovery.

(b) Dislocation Configurations

(i) Fatigue Substructure: A characteristic manifestation of

fatigue damage is the existence of a high density of dislocation loops. This

observation has been made in several of the close-packed metals; e.g.

aluminum, copper, nickel, gold, zinc and magnesium. (7'9) The current fatigue

substructures found in high purity beryllium are no exception to this pattern.

- 28 -



F-B2028-!

The available evidence strongly suggests that the loops formed

durin_ fatigue lie on the basal plane. Possible Burgers vectors associated

loops are: the partial vectors _ _00017 (Frank dislocation) andwith these

1 <20_3> (Frank-Shockley composite dislocation); and the perfect vectors6
1 -

1 <ll_3> andl_ <ll20>. The diffraction contrast experiments have

eliminated _ _O001] since the loops appear in contrast in foils having a basal

plane orientation and using reflections from planes normal to the basal

plane. Further, the _ <20_3> partial vector is eliminated since the loops

are extinct using reflections of the type lOgO. Thus, the loop vector is

<ll_3> or _ <ll_O> which means that in either case the loops do noteither

give rise to a stacking fault. It is not possible to verify the absence or

presence of fringes indicative of faulting in the inclined loops since the

extinction distances in beryllium approach half the total foil thickness.

For example, the extinction distance is _ 1500A using the 0002 reflection.

(ii) Recovered Substructure: Extensive recovery was observed

at ambient temperatures in the electron microscope in foils prepared from

bend fatigue crystals of both orientations. In the case of basal bend

fatigue (Figure 1-13), the large dislocation loops appear to belong to on__ge

specific set of crystal planes. From their projected shapes, the loops could

be either on the (O001) plane or on the (_llO) plane. The former appears

to be more likely since it is difficult to envision why only one of the

three possible {ll_O] planes should be favored as the loop plane. The

observation of a closed loop 'ghost' image after the disappearance of the

actual loop (e.g. at the location of loops 3,& and 8 in Figure 1-13b,c,d),

is best explained in terms of a combination of climb and prismatic glide;

this requires that the loops have a Burgers vector out of the plane of the

loop.

Since the extinction distances in beryllium are of the same order

of magnitude as the foil thickness, fringes are not expected, even in

large faulted loops, should these be present. However, the appearance of

the loop image does give an indication of the nature of the loop. Thus,

the small loops constituting the recovered structure of the prism slip

crystal (Figure 1-1A) show two distinct forms of image contrast, namely light
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or dark inside the loop. This could arise from differences in the depth

of each inclined loop from the foil surfaces, provided the loops are

faulted. In comparison, the absenceof any variation of image intensity

inside the large loops of the recovered structure of the basal slip crystal
(Figure 1-13) points to their being perfect. These loops are believed to

lie on the (OOO1)plane. For a better understanding of the recovery mechanism,

a unambiguousdetermination of the loop vectors for both crystal orientations

is necessary. This is possible with the use of specific diffraction contrast

conditions for image formation in the electron microscope.

The annealing experiments (lOO°Cto 300°C for 1 hour periods) on

bulk crystals, oriented for basal or prism slip in bend fatigue, serve
to showthat the recovery effects described above occur only in thin foils.

Recovery effects of this nature do not occur in foils prepared from beryllium
fatigued by axial (tensile or compressive) cycling; the reason for this

difference lies in the uniform distribution of fatigue damagethroughout

the crystal in axial cycling.

(iii) Mechanismof Loop Formation: The occurrence of dislocation

loops having a direction of elongation normal to each of the three possible
1 <_llO> vectors (Figures 1-5a,b,c and 1-12b) can be accounted for by the
3
model of Johnston and Gilman (16) in which a moving screw dislocation becomes

jogged by cross slip. Motion of the jog will then give rise to either rows

of vacancies or interstitials or of two edge segments of opposite sign

depending on the height of the jog. Whether or not the coalescence of point

defects to form prismatic loops can occur will depend on the point defect

mobility in the beryllium at the fatigue temperature (3OO°K). Insufficient

data are available in the literature to allow for a quantitative assessment

of the interstitial atom mobility. However, by comparison with other close

packed metals, and taking into account the relatively high Debye temperature

(ll60°K) it is estimated that interstitials are relatively mobile at ambient

temperature. Thus, if trails of interstitials are formed at the small jogs

these will coalesce to give interstitial loops. An estimate of the vacancy

mobility can be made from a knowledge of the activation energy for self-

diffusion in Beryllium (Lee et al_17),"Naik et al(18)). This activation
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energy is approximately 1.7eV, and if it is assumedthat approximately

one half of this energy represents the activation energy for vacancy migration,

the calculated jump frequency is sufficient to expect somecoalescence of

vacancy trails into vacancy loops at ambient temperatures.

Larger jog heights of several atomic spacings give rise to trails
of plus-minus edge dislocation dipoles. These mayreduce their energy by

pinching off to form small circular loops, or they mayhave their spacing

reduced or be terminated by the segmentsof the original screw dislocation

moving together again. This has been observed directly by Damianoand
Hermant6)," and there are several instances of this form of configuration

in the present study.

The cause of the jogs is not completely clear. Although the

glide dislocations intersect the grown in dislocation networks, the jogs

formed in this way are glissile since the Burgers vectors of the stationary
and moving dislocations are parallel and in the basal plane t6)". It is

possible that in a metal such as beryllium 'obstacles ' are present in the
lattice in the form of submicroscopic precipitates or impurities and that

these give rise to sessile jogs on moving screw dislocations. Repulsive

stresses from screw dislocations on parallel planes maybe sufficient to
promote cro ss-slip.

(c) A Comparison with Simple Tension

Axial fatigue for the basal slip orientation produces a uniform

dislocation substructure with no apparent predominance of edge or screw

component. This is in strong contrast to the substructure developed in

simple tension (Damiano and Herman (6)) for crystals of identical orientation.

In stage I of the tensile test long edge pairs and edge dipoles are present,

suggesting that the screws are highly mobile on the basal plane. At higher

strains (stage II), the presence of numerous edge boundaries is associated

with the onset of rapid work hardening. Differences also exist between the

tensile and axial fatigue substructure in crystals oriented for prism slip.

The tensile substructure, viewed on the prism plane, shows a predominance

of screw dislocations (stage I); it is considered that the latter intersect
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the grown in networks and becomejogged, thereby impeding motion. In stage

II, complex interactions give rise to tangled massesof dislocations. The

fatigue substructure observed on the prism plane is somewhatsimilar to

that developed in stage II of the tensile test; however, this does not appear

to be derived from a structure consisting initially of predominant]_v screw
dislocations. Since the prism slip is accompaniedby cross-slip on the

basal plane, a tangled dislocation configuration is to be expected if no

recovery processes take place.
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SECTION ii

THE MICROSTRAIN BEHAVIOR OF SINGLE CRYSTAL B_RYLLIUM

ABSTRACT

The room temperature micro strain behavior of

zone-refined single crystal beryllium has been examined

as a function of prestrain. Crystals oriented for basal

slip were deformed in simple tension (prestrains <-0.09)
and by low frequency cyclic compression (prestrains < .10).

The friction stress was determined from the energy

dissipated in generating closed hysteresis loops as a

function of forward plastic strain and maximum stress

amplitude. The corresponding dislocation substructures

were characterized by transmission electron microscopy. The
friction stress Tf associated with forward plastic strain

amplitudes < 5 x 10-5 is low and in the range 0.02 - 0.13 Kg.mm -2,

with no effect of prestrain; a large fraction of _f is due to
dislocation-impurity interaction so that the actual lattice

friction stress on the basal plane is extremely small. Closed

hysteresis loops exist at stress amplitudes up to the macro-

scopic flow stress level with corresponding forward plastic
strain amplitudes as high as 2 x 10-3-. A second and much

higher friction stress _f(2) _ 1 Kg.mm-2 is effective at these
strain amplitudes. Cyclic compression eliminates the region

of easy glide (Stage I) in beryllium and raises the flow
stress. Differences in behavior in tension and cyclic com-

pression, and the independence of _f with prestrain, can be
understood from a knowledge of the associated dislocation

substructures.
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I. INTRODUCTION

This study is concerned with the details of reversible flow and

small permanent plastic strains occurring in single crystal beryllium below

the macroscopic yield stress. Apart from attempting to understand the

dislocation mechanism(s) that controls deformation, interest in the microstrain

region of beryllium is intensified since the material has a potential application

in precision inertial instruments. A knowledge of the stress levels which give

rise to small permanent strains, gives a useful measure of dimensional

stability.

Bonfield et al have studied the microscopic yield stress (defined

as the stress required to cause a permanent strain of 2 x lO -6 in/in) in poly-

crystalline QF_J-NSO hot-pressed beryllium as a function of surface condition _lj,"_

and dislocation substructure (2'3). Recently, Ruckman and White (1) have made

similar measurements on cast and extruded beryllium in various stages of heat

treatment and surface condition. Bonfield and Li (5) extended their studies

on polycrystalline Q_-NSO material to include a determination of the friction

stress as a function of dislocation substructure; a friction stress of

-2
0.28 Kg.mm was obtained for fully annealed beryllium. Although a large

increase in friction stress with increasing prestrain was reported, Lawley

and Meakin (6) have shown that their analysis is inconsistent with that required

for hysteresis loops in the anelastic region; a definite increase in friction

stress with prestrain was not established. From theoretical considerations,

and also from the observation that dislocations tend to lie parallel to

crystallographic directions, irrespective of purity, Wilhelm and Wilsdorf (7'8)

concluded that the frictional force on moving dislocations in beryllium was

high. To date, Bonfield and Li's work on QMV-NSO beryllium constitutes the

only direct measurement of the friction stress.

The present paper is concerned with a study of the friction stress

in high-purity single crystal beryllium using the analysis of closed hysteresis

loops. Crystals oriented for single slip were prestrained by varying amounts
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in tension _nd cyclic compression, and the corresponding dislocation

configurations examined by transmission electron microscopy. This dual

approach has allowed for a more detailed understanding of the process

of basal slip in beryllium, the differences in substructure produced by

tensile and cyclic loading, and has also provided an interesting

comparison with the microstrain behavior of other close-packed metals.
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II. EXPERIMENTAL PROCEDURE

(a) Specimen Preparation: Single crystals were grown from 0.5" dia.

Pechiney secondary refined vacuum cast and extruded stock using the floating

zone melting technique developed by Spangler et al(9). This grade of

beryllium contains -- 1200 ppm by weight BeO, and a total < _00 ppm by weight

metallic impurities. The crystals were given three zone passes, and oriented

by seeding for single slip on the (O001) 1/3 [_llO] system (Schmid factor

0._76). Specimens were shaped and cut to size by spark-discharge machining.

The gauge lengths and gauge diameters in tension were 0.75" and 0.080"

respectively; in cyclic compression the corresponding dimensions were 0.435"

and 0.150". After spark machining, the specimens were electropolished to

remove the surface damage from spark machining (a solution of 200 cc ethylene

glycol, 20cc nitric acid, 4cc sulphuric acid, 4cc hydrochloric acid was used

at a potential of 15 volts), and then annealed at lO00°C for two hours under

vacuum.

(b) Microstrain Testina: The method of specimen gripping and strain

measurement is shown in Figure 2-1. This assembly formed part of the complete

straining jig which was located between the fixed and moving cross heads

of a standard Instron machine. Design of the jig was such that strict

alignment of specimen axis and stress axis is maintained during testing.

For compressive loading, hardened steel balls (D) were held against the

conical ends of the specimen (F).

Specimen elongation was measured by a Sanborn dc differential

transformer (model 2_ dc DT-OSOB12) which comprised a transducer (A) and

core mounted on a micrometer screw (B), attached to the shoulders of the

specimen by the parallel arms (C). Direct current outputs from the transducer

and the Instron load cell were fed to a Moseley x-y recorder (Model 2D-2A).

At maximum sensitivity, one inch of traverse on the x or y axis corresponds

to a load of 9.3 pounds and an elongation of _.9 x lO-6 inches, respectively.
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In studying the anelastic behavior at a given pre-strain, a series

of hysteresis loops was obtained at increasing levels of stress amplitude.

To study the effect of pre-strain, the specimenwas mounted in the Jig, strained
to the desired level, and a series of hysteresis loops then recorded.

The procedure was then repeated on the samecrystal for increasing increments

of prestrain, without removal of the specimen. The load-elongation
characteristics of the testing equipmentwere examinedusing steel specimens

having a size and geometry identical to that of the beryllium crystals.

Under these conditions, and for the entire load range covered in the

experiments, no anelastic loops were observed.

- _0 -



F-B2028-1

III. RESULTS

(i) Tensile Deformation

The hysteresis characteristics and friction stress were examined

at various pre-strains in the range 0.00018 to 0.087 shear. Typical sets

of hysteresis loops are illustrated in Figure 2-2 for pre-strains of 0.0019

and 0.087. Closed loops are discernible above a resolved stress amplitude

0.3 Kg.mm-2; the loops remain closed for stress amplitudes up to _ 90%

of the macroscopic flow stress. Reproducibility of the hysteresis loops

was verified by repeated loading and unloading to the same stress amplitude.

Elastic modulus, determined from the slope of the elastic line at stresses

below that at which closed loops form (Figure 2-2), is _ 35,000 Kg.mm -2.
-2

This is in good agreement with the value of 31,000 Kg.mm calculated for

this crystal orientation using the published elastic coefficients of beryllium _10j.""

The friction stress determination is based on the analysis of

closed hysteresis loops. The energy AW dissipated in generating a closed

loop is related to the maximum forward plastic strain yp (see Figure 2-2)

by the relation: (ll,12)

AW = 2_f yp (2-1)

Tf is the friction stress responsible for the dissipation of energy, and

is taken to be 1/2 the slope of the line generated by plotting AW against

yp. The derivation of Equation (2-1) requires that the extrapolation of

the best line fit at low strains (< 5 x lO-5 ) passes through the origin.

The implications of a positive intercept on the strain amplitude axis, and

an associated high friction stress, are discussed later. It is worth pointing

out that the terms loop width and forward plastic strain are both used in

the literature, and lead to confusion. The theory requires that the forward

plastic strain be used in determining the friction stress. It is a simple
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exercise to show that if the stress amplitude exceeds _f, then the

maximum forward plastic strain is greater than the maximum loop width.

Consequently, for • > &_f, a plot of loop area against loop width will give

an erroneously high friction stress.

A representative plot of loop area against forward plastic strain

is given in Figure 2-3 for a crystal pre-strained O.Ol&6. From the slope of
-2

the line extrapolation through the origin, the value of Tf is 0.02 Kg.mm .

Similar plots are obtained from the sets of hysteresis loops at all the

imposed pre-strains; the corresponding frictional stresses are in the range
-2

0.02 to 0.13 Kg.mm , with no apparent dependence on pre-strain, Table 2-1.

It is also possible to determine the friction stress from an

examination of the form of the anelastic loops. Upon unloading and reloading,

forward plastic strain will occur at a stress 2Tf, so that the minimum

stress for the production of a visible hysteresis loop is 2Tf. An estimate

of Tf can therefore be made either by direct inspection of the anelastic

loops, or more accurately, by plotting loop area against stress amplitude

and extrapolating to zero loop area. This plot at 0.Ol&6 pre-strain is
-2

included in Figure 2-3, and gives a value for Tf of 0.03 Kg.n_ ; the

consistency of the two approaches is apparent from the two sets of friction

stress measurements listed in Table 2-1.

In terms of the macroscopic stress-strain curve, the friction

stress constitutes _ 10% of the flow stress, Figure 2-L. The macroscopic

resolved shear stress-shear strain curve is for primary slip on the (O001)

1/3 r2_07 system. The critical resolved shear stress for basal slip

(_ 0.9 Kg.n_ -2) is consistent with the stress levels reported by

Spangler et al (13) for three zone-pass secondary refined Pechiney beryllium.

Extensive analytical studies involving independent determinations at four

laboratories (London and Herman (l&)) have shown that the impurity

content of the zonedmaterial is approximately 30 ppm, on an atomic basis.

The non-metals carbon, nitrogen, oxygen, and fluorine contribute approximately

half of this total.
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Table 2-1

SUMMARY OF THE FRICTIONAL STRESS VALUES

Pre-Strain % (Shear)

O. 018

0.194

I.A6 Tension

3.3

8.7

-2
Tf • Kg.mm

(Slope Method

0.130

0.096

O. 022

0.025

0.020

-2
mf Kg.mm

(Intercept Method)**

1.10

0.08

0.03

0.I0

0.04

40(Cyclic Compression) 0.080 0.i0

*Slope given by: W_

2_p

**Intercept on stress amplitude axis at &W = 0

(2) Cyclic Compression

The cyclic compression tests were performed at a low frequency

5 cycles min -1. Prior to a determination of the friction stress from

closed hysteresis loops, crystals were given a total pre-strain 0.40 by cycling

at a constant glide strain amplitude of 0.008 per cycle. Changes in the size

and shape of these open loops are illustrated in Figure 2-5, with each loop

(superimposed upon a single origin) symmetrical. The slope of the nearly

horizontal position of each loop remains essentially constant, but the extent

of the region of constant slope decreases with increased hardening after 5

cycles. With further cycling, the transition from elastic unloading to

reversible plastic flow (non-elastic strain recovery) occurs at higher values

of the applied compressive stress. The cyclic work hardening curves lie well

above the corresponding tensile curves, as illustrated in Figure 2-6. For

simple tension in this orientation, the region of low work-hardening (Stage I)

extends to _130% glide strain. The large difference in stress level for a

given strain in the two conditions is explainable from a knowledge of the

existing dislocation substructure and will be discussed in Section IV.
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Anelastic hysteresis loops obtained after a cyclic pre-strain of

0._O are illustrated in Figure 2-7. As in the case of tensile pre-strain,

the loops remain closed at stress amplitudes (2.8 Kg.mm -2 for loop #9) close

to the macroscopic flow stress i.e. 2.92 Kg.mm -2 (Figures 2-5 and 2-6). The

corresponding plot of irreversible work against forward plastic strain,

and stress amplitude, is given in Figure 2-8, and the friction stress (average

value) listed in Table 2-3. As in the case of tensile deformation, the elastic

modulus determined from the slope of the elastic line at stresses below that

at which closed loops form is in good agreement with the calculated modulus.

(3) Dislocation Configurations

Interpretation of the results on anelastic behavior is considerably

enhanced by a knowledge of the dislocation substructure present in the as-

grown crystals, and after pre-straining. Damiano and Herman (15) have made

a detailed examination of zone-melted single crystals in the as-grown

condition and after tensile deformation of single slip orientations. In the

as-grown crystals, most of the dislocations are arranged in networks and

subboundaries with a mesh size in the range 0.i_ to _ i_. The nets are

planar and lie in the (0001) plane; dislocation contrast experiments show

the nets to be made up of dislocations having 1/3 <Ii_0_ Burgers vectors.

-2(7)
Nodes are contracted suggesting that the stacking fault energy is _ 30 ergs.cm

In Stage I of basal slip (which extends to _ 120%o glide strain) the dislocation

structure consists mostly of edge pairs, indicating that the screws move

more easily than the edges, contrary to what is generally found in FCC and

BCC metals. The deformation is extremely inhomogeneous in that the edge

dislocations are arranged in groups or pockets. These observations have been

confirmed in the current program.

No electron microscope studies of this nature have been reported

involving cyclic loading; consequently, as an integral part of the micro-

strain study, thin foil observations were made parallel to the basal plane,

and also parallel to the (01_0) prism plane containing the preferred r_l107

shear direction. In contrast to tensile deformation, compressive cycling

produces a uniform dislocation substructure on the (0001) slip plane with

- _9 -
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no predominance of edge or screw component. The micrographs in Figure 2-9

illustrate the substructure after a glide strain 0.07. Characteristic

features include: three-fold nodes, angular dislocations by virtue of pinning

effects, and a broad spectrum of dislocation loop shapes and sizes. Elongated

loops have a direction of elongation along one of the three possible <lOgO>

directions in the basal plane normal to each of the three possible 1/2 <ll_O>

vectors. The operative reflection (g = ll_O) in Figure 2-9(a) gives rise to

diffraction contrast for all dislocations having Burgers vectors of the form

1/3 <ll_O>; using each of the three lOgO type reflections in turn, it is

verified that all three Burgers vectors of the form 1/3 <ll_O> are present.

The prismatic dislocation loops which are clearly seen on the basal plane

are not resolvable in the prism plane foils, indicating that the loops lie

on the basal plane. Since the extinction distance in beryllium is of the

same order of magnitude as the foil thickness, a change from bright field

to dark field illumination gives rise to a reversal in dislocation contrast

(black to white). The bands of high dislocation density in Figure 2-9(b)

delineate the bash plane trace. However, these bands are not straight and

precisely parallel to K_ll07 over long lengths but show a wavy character;

this is interpreted as evidence of the cross slip of segments of screw component

from the basal plane to the prism plane (the plane of the foil).
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IV. DISCUSSION

(i) The Initiation of Dislocation Motion

Contrary to earlier prediction (7) , the friction stress in beryllium
-2

oriented for basal slip is low and in the range 0.02 to 0.13 Kg.mm . This

constitutes _ 10% of the flow stress. Note that this is the friction

stress associated with closed hysteresis loops giving rise to forward plastic

. (12) aluminum, (16)strain amplitudes < 5 x 10-5 In single crystals of zinc,

and copper, (17) the corresponding friction stresses are 0.004 Kg.mm -2 ,

0.03 Kg.mm -2, and _ 0.15 Kg.mn -2 respectively; in each case, the friction

stress constitutes a higher percentage of the flow stress (_ 20-30%) than in

beryllium.

In the analysis of closed hysteresis loops, the friction stress _f

is defined as the stress resisting the bowing of dislocation segments between

pinning points. Major contributions to _f arise from the Peierls-Nabarro

force of the lattice, and the interaction of dislocations with impurity solute

atoms. Conrad (18) has shown that the strengthening in beryllium due to solid

solution hardening can be approximated by"

LT= (u/lO)
Bc

where c is the atom fraction of solute impurity, and W is the shear modulus.

A similar dependency exists in BCC and FCC metals, (19) for substitutional

atoms. For the zone-refined beryllium, c -_ 30 x l0-6, and taking _ = 16 x l0ll

dynes.cm -2, dr -_ 0.0_ Kg.mm -2. Although this value is only approximate,

it does suggest that a large fraction of _f is due to dislocation-impurity

interactions, and that the actual lattice friction stress on the basal plane

is extremely small. From a consideration of the measured values of activation

volume (V*), activation energy (Ho) , and frequency factor (9), in beryllium,

Conrad (18) has concluded that the dislocation mechanism responsible for the

effect of temperature and strain-rate on basal slid is the intersection of

dislocations on non-basal planes; this implies the existence of a low friction

stress _f on the basal plane, thereby eliminating the Peierls-Nabarro stress
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as the controlling mechanism. It would be highly inst_active to measure

Tf fo___rro_sm slio since Conrad concludes that in this case the Peierls

Nabarro stress is the controlling mechanism, and Tf should be significantly

higher.

A lack of ar_ dependence of Tf on pre-strain is in keeping with

the observed dislocation substructures. By virtue of the closed loop analysis

at forward plastic strain amplitudes _ 5 x l0-5, the friction stress Tf,

measured at ar_ prestrain, is that stress associated with the bowing of

dislocations over small distances << 1/10 micron. Consequently, with the form

of substructure developed by prestraining in tension or cyclic compression

(Section III (3)), increases in Tf arising from dislocation intersections

or elastic interaction with other dislocations are unlikely.

(2) A_nelastic Behavior at High Forward Plastic Strain Amplitude

The micro strain behavior of single crystal beryllium oriented

for basal slip is unusual in that closed hysteresis loops can be traced

at stress amplitudes up to the macroscopic flow stress level (Figures 2-2

and 2-7 ); the corresponding plastic strain amplitudes are as high as 2 x lO-3.

In zinc (12)
, open loops are observed at stresses well below the flow stress,

with corresponding strain amplitudes in the range 5 x l0-5 to l0-_ (max),

depending on pre-strain. Copper tlT)"and aluminum, tl6)" show a similar

behavior to zinc. In this respect, beryllium behaves like a-brass (Meakin

and Wilsdorf (20)) in that closed hysteresis loops _xist up to the flow

stress, and reverse plastic flow occurs with a corresponding shear on the

glide plane _ lO-3. The reversible behavior in H-brass is explainable in

terms of the compression and relaxation of dislocation pile-ups.

It is important to point out that the friction stress associated

with a reverse plastic strain _ lO-3 is significantly higher than that

measured at the low strain amplitudes _ 5 x lO-5. This is apparent from

an examination of the plots of loop area versus forward plastic strain at

the higher strain amplitudes (Figures 2-3 and 2-8). From the slope of the plot

at _p = 2 x 10-3 in Figure 2-8, _f(2) _- i Kg.mm -2. Lawley and Meakin (6)
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u

have shown that a positive intercept on the strain axis, and the correspondingly

high friction stress are the result of the onset of a second mechanism controlling

plastic flow. Although it might appear reasonable under these circumstances

to expect a contribution to the friction stress from elastic interactions, it

is not clear how the movement of dislocations against these internal stresses

would contribute to the energy dissipated. Since the loops remain closed,

the dislocation glide distances have to be shorter than the wavelength of

the stress field, and complete recovery of the elastic strain energy should

occur on closing the loop. The reversibility of dislocation motion, as

evidenced by the closing of the loops, eliminates processes such as dislocation

interaction, the dragging of jogs, and dislocation - cell boundary interactions.

An increase in the effective friction stress with increasing strain amplitude

may be related to a difference in the mobilities of edge and screw components.

The predominance of edge pairs on the basal plane after simple tension

indicates that the screws move more easily than the edge components.

(3) Tensile and Cyclic Hardening

Comparison of the stress'cumulative strain curves in Figure 2-6

makes it clear that cyclic loading effectively eliminates any region of

easy glide (Stage I). It is interesting to note that the work-hardening

slope in cyclic compression in the cumulative glide range 0.1 to 0._

tension (15)
(d_ _- 1.5 Kg.mm -2) is the same as that for simple

in

Stage II at glide strains in the range 1.6 to 2.

The existence of long edge dislocation pairs and edge dislocation

dipoles in Stage I in simple tension may be axplained_lSr ) on the basis

that screw dislocations gliding on the basal plane in the easy glide region

have considerably more ductility than edge components, and can readily glide

out of the crystal, leaving the edge dislocations. Dipole formation

involves some form of cross-slip mechanism for the screw component; Damiano

and Herman (15) consider the model proposed by Segall (21) to be applicable.

At the limit of Stage I, the edge dislocations are arranged in groups or

packets, and with further increase in density, interaction takes place

between the gliding edge dislocations and there is an associated increase

in the flow stress. Even at the limit of Stage I, the deformation is
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extremely inhomogeneous. The dislocation density within the groups of

edge dislocations approaches lO lO -3cm.cm , but the spacing between

individual groups is still several microns.

The e_nation of Stage I of easy glide in cyclic compression,

the higher flow stress, and the uniform dislocation substructure on the

(OOO1) plane (Figure 9(a)) can be rationalized in terms of the behavior

of the screw dislocations. On cycling at a glide strain amplitude 0.008,

most of the mobile dislocations remain in the crystal; the successive forward

and reverse motion enhances the probability of cross slip of the screw

components. The continued forward-reverse motion of the screws then

requires additional energy either to create point-defects in the case of

small jogs, or in creating trails of edge dislocations behind large jogs.

The substructure shown in Figure 9(a) is in accord with this proposed

mechanism in that elongated dislocation loops are present having a direction

of elongation along each of the three <lO[O> direction in the basal plane

normal to each of the three possible 1/3 <ll_O> Burgers vectors. Also con-

sistent is the form of the dislocation substructure seen on the (Ol[O)

prism plane (Figure 9(b)) with the basal plane perpendicular to the

plane of the foil. The wavy character of the screw dislocations running

in the [_llO_ direction is a result of cross slip of screw segments to

and from the basal plane onto the (Ol[O) prism plane.
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V. SUMMARY

(i) The friction stress Tf for basal slip in beryllium is low

and in the range 0.02 to 0.13 Kg.mm -2, with no dependence on prestrain. This

is the stress associated with closed hysteresis loops giving rise to plastic

strains amplitudes _ 5 x l0-5.

(ii) A large fraction of Tf is due to dislocation-impurity inter-

actions so that the actual lattice friction on the basal plane is extremely

IoN.

(iii) Closed hysteresis loops can be traced at stress amplitudes

up to the macroscopic flow stress level; the corresponding plastic strain

amplitudes are as high as 2 x l0-3. The anelastic behavior at these strain

amplitudes is associated with a second and higher friction stress _f(2)
-2

_ I Kg.n_ .

(iv) Cyclic hardening effectively eliminates amy region of easy

glide (Stage I ) and gives a work-hardening rate comparable with that in

Stage II under tensile deformation.

(v) The increase in stress level in cyclic compression, and the

independence of _f on prestrain, can be understood from a study of the

associated dislocation substructures.
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SECTIONIII

THEEFFECTOFTHERMAL,MECHANICAL,ANDSURFACE
TREATMENTSONTHEFLOWANDFRACTURE

OFBERYLLIUE

ABSTRACT

The tensile micro strain, macroscopic flow, and fracture charac-

teristics of polycrystalline QMV-NSO hot-pressed beryllium have been studied
after various thermal, mechanical, and surface treatments. Mechanical

property data presented refer to the influence of: surface deformation

produced by spraying with carborundum powder, strain cycling, grease-coatings.

and evaporated or electrodeposited metal layers. In addition, the associated

dislocation substructures have been characterized using transmission
electron microscopy. These treatments do not give rise to any marked

changes in strength or ductility relative to the annealed condition. Annealing
in the range 750°C to 850°C increased the ductility by a factor of two

compared with the as-received condition, with little detriment to the

strength. The frictional stress resisting the movement of dislocations

is _ 1.2 Kg ram-2, and is relatively insensitive to prestrain or surface
treatment. The microscopic yield stress (at a strain of 2 x 10-6) decreases

from 8 Kg mn-2 to 1.7 Kg mn-_ on annealing. Dislocations are present in

both simple and complex arrangements. Prominent features include subboundaries,

dipoles, groups of dislocations confined to one slip plane, heavily jogged
dislocations, and dislocations anchored at inclusions.
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I. IRTRODUCTION

Under specific conditions of loading and orientation, beryllium
may be considered as a ductile metal. In general, however, the use of

beryllium as a structural material is severely limited by the brittleness

problem. In muchof the work on brittle materials, there is evidence to

showthat the operation of surface sources pl_ys an important role in the
deformation process leading to fracture (1). A theoretical consideration

of the constraints on dislocations at and near to the surface (2) suggests

that the experimental observations may in some cases be accounted for by

the ease of operation of dislocation sources near the specimen surface

compared to those in the interior. Gilman and Johnson (3) found that LiF

crystals sprinkled with lO0 mesh carborandum particles could be bent more

easily and uniformly than crystals in which the surface defects were removed

by polishing. Similarly, Stokes, Johnson and Li t_J, observed that the flow

and fracture behavior of chemically polished MgO crystals were influenced

strongly by the density and distribution of slip at the start of plastic

flow. Very fine slip either stabilized cracks at a size below the limits

of resolution of optical microscopy, or modified the usual crack

nucleation process. It was found that when the density of slip was

increased by injecting dislocation sources into the crystal by sprinkling

with carborundum particles before loading, such crystals were always ductile

in tension.

This phase of the program is concerned with a comparative

evaluation of the microstrain, plastic flow, and fracture behavior of

polycrystalline hot-pressed beryllium after various thermal, mechanical,

and surface treatments. The latter include grease coatings, evaporated and

electrodeposited metal films, surface deformation by particle spraying,

strain cycling and fatigue cycling. As an integral part of the evaluation,

the associated material substructures have been characterized by transmission

electron microscopy. In the particular case of commercially pure and secondary

refined beryllium, Morrow and Moore (5) obtained an enhancement in ductility

from _ 50% to > I10% by testing overaged material in Cerrobend* at temperatures

*.An allo_ Of lead, tin, bismuth, and cadmium which melts at 80°C.

- 62 -



F-B2028-1

between 300°C and _50°C. Bonfield et al (6) have shownthat the micro strain

behavior of hot-pressed QMVmaterial is particularly sensitive to surface

condition; a removal of the worked surface layers by chemical polishing

resulted in an appreciable increase in the microscopic yield stress. To

date, however, there have been no extensive studies of the effect of

surface condition on microstrain behavior, flow, and fracture.

II. EXPERIMENTALPROCEDURE

(i) Material: The starting material was Brush Beryllium QMV-NSO

nuclear grade, in the form of 0.250" diameter by 6" long hot-pressed poly-
crystalline rod. This has a purity _ 99.3%by weight, with BeON 0.77% by

weight, and C _ 0.10%by weight, as the principal impurities.

(ii) SpecimenPreparation: Tensile specimenswere cut and shaped

from the 0.250" diameter rod by spark-machining. The rods were first cut to

0.]40" diameter at the rate of O.O01"of radius per minute using a coarse
spark discharge. A final gauge diameter of O.113" was produced by three

equal cuts of 0.009" using succeeding_y finer capacitances in the discharge

circuit. The final size of the specimenswas 0.75" shoulder length and

0.70" gauge length. Specimenswere polished electrolytically in a glycerol
solution (7) to a depth _ 0.002" from the outer surface; no twins or cracks

were seen when examinedat x 500 with an optical microscope.

The specimenswere tested in the as-received condition, after

vacuumannealing, annealing in argon, after particle spraying, metal-

coating, grease-coating, and cyclic deformation. For the annealing

treatments, the specimenswere wrapped in tantalum foil and sealed in

vycor tubes.

Specimenssuitable for electron microscopy were prepared by

spark-machining thin slices from the tensile specimens. The slices

were then electropolished to obtain electron-transparent areas. Difficulties

arise in the polishing of this form of beryllium due to the fine grain

structure; since optimum conditions for polishing depend strongly on the
crystallographic orientation of the beryllium, wide variations exist in
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the final thickness of the thin foils. The foils were examinedin a

Philips lOOBelectron microscope at 80KVor IOOKV.

(iii) Microstrain and Tensile Testing: Comparative microstrain

and tensile tests were carried out in a straining jig mountedbetween the

fixed and moving cross-heads of a standard Instron machine, Figure 3-1.

This form of specimenholder ensures excellent alignment between the

loading axis and the specimen axis, an essential requirement when recording

strain to a sensitivity _ 2 x lO-6. Differential transformers were used to

measure the stress through the displacements across a proving ring, and

the strain across the gauge length. The changes in output signals of the

transformers, corresponding to displacements across the proving ring and

the gauge length, were amplified and fed to a Moseley X-Y Recorder; this

gave a continuous recording of the stress-strain behavior of the specimen

to the point of fracture. A number of strain ranges were available so

that the strain sensitivity could be increased to study anelastic effects

at different stages of the tensile test.

III. EXPERIMENTAL RESULTS

(i) Microstrain Behavior

Stress-strain characteristics of the hot-pressed beryllium in

the micro strain region following various pre-treatments are illustrated

in Figure 3-2. The elastic contribution has been subtracted from the total

strain in each case. The curves show that an anneal in vacuum at 750°C

(2 hours) drastically reduced the micro-yield stress from 8 Kg _n -2 to

1.7 Kg _n-2; the corresponding flow stresses at strains _ 3 x lO-& are

also lower. With the sensitivity of strain measurement used in these experi-

ments, the microscopic yield stress may be defined as the stress giving rise

to a permanent strain of 2 x lO-6. These values are in good agreement with

those reported by Bonfield and Li (8) for as-received and annealed hot-pressed

-2 -2
QMV- beryllium, namely _ 7 Kg mm , and _ 2 Kg nm respectively. Surface

sprinkling of annealed material with carborundum powder (mean diameter _ _83_)

raises the flow stress above that of the as-annealed beryllium. Copper plating

- 6_ -



Fig. 3-1 Microstrain j i g  with specimen in pos i t ion .  
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has little effect on the stress-strain behavior of the annealed material.

In contrast to the effects produced by annealing, sprinkling, or plating,

cycling straining prior to tensile testing causes a significant increase

in strain-hardening.

The apparent Young's Modulus was determined from the elastic

portion of the stress-strain curves near zero stress. The value obtained

was 30,000 Kg mm-2, which is in good agre_nent with the dynamic modulus (9)

-2
of 30,100 Kg mm .

Measurement of the frictional stress opposing the motion of

dislocations is an important parameter, since such measurements provide

valuable information on the deformation process, and also assist in the

interpretation of transmission electron micrographs. The method of determining

the frictional stress has been reported elsewhere (lO). The technique entails

use of the microstrain apparatus to measure the irreversible work done in

forming anelastic loops such as those shown in Figure 3-3a. These loops were

obtained after 0._% prestrain in a specimen annealed and sprayed with

carbarundum powder. From the analysis of a closed hysteresis loop, the

frictional stress _f is given by _W/2Cp where AW is the irreversible work

done during each cycle, and e is the forward plastic strain. Such a plot
P

is shown in Figure 3-3c. The analysis requires that the line go through

the origin, since AW -- 0 when the forward plastic strain is zero. Thus,

the frictional stress is determined from the slope of the straight line of

best fit through the origin. Alternatively, the frictional force can be

obtained from a plot of stress amplitude against AN' In this case, the line

intercepts the stress axis at 2af. This represents the stress (aE) required

to form the first loop, as opposed to an elastic line with &W = O; in the

limit, as _W - 0, _ _ _E (- 2of). It is advisable to use both plots; the

corresponding stress a_plitude - _W plot for the sprayed material is given

in Figure 3-3b.

The frictional stress values from the plots of Figures 3-3b and 3-3c

are 1.1 Kg _n-2 and 1.3 Kg mm -2 respectively. The various treatments do not

give rise to a_ significant changes in the frictional stress. Pre-strains

_p to 2.5% do not affect the level of the frictional stress af.
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(ii) Macroscopic Flow and Fracture

In terms of strength and ductility the reasoning and objectives

behind the various annealing and surface treatments can be stmmmrized as

follows: (a) the production of a uniform density of mobile dislocations

(b) a strengthening of the specimen by 'straightening' the surface which

is believed to provide most of the dislocations during the initial stages

of deformation (c) protection of the surface from contamination by atmos-

pheric gases during deformation.

The effect of specimen condition of the stress and strain at

fracture is illustrated schematically in Figure 3-&. The data refer to

two separate shipments (batches A and B) of hot-pressed QMV-NSO beryllium;

for purposes of comparison, values are included for vacuum-annealed (900°C)

secondary refined Pechiney beryllium. The specific treatments, and the

corresponding levels of stress and strain at fracture, are compiled in

Table3-]. The data in Table3-1 and Figure 3-_ show that the fracture stress

of specimens prepared from batch B tended to be systematically higher than

that of the corresponding specimens from batch A.

The general form of the stress-strain curves to fracture in each

of the various conditions is given in Figures 3-5 to 3-8. It is clear that

annealing the as-received berylli_n either in argon or in vacuum in the

range 750 to 850°C doubles the ductility with only a small reduction in

the stress at fracture. The stress-strain curves for the specimen annealed

in argon closely follows that for the specimen annealed in vacuum. Examina-

tion of the fractured specimens by optical microscopy revealed the presence

of a large number of cracks, such as shown in Figures 3-9 and 3-10 for the

as-received and the strain cycled specimens, respectively. The influence

of the various treatments is now considered in more detail.

Ca) Cyclic Straining: Alden Cll) has suggested that the mechanical

properties of MgO crystals, which have been hardened progressively by cyclic

straining, are greatly superior to those of the as-received material. It

therefore appeared warranted to apply similar cyclic loading increments to

beryllium. An annealed polycrystaLline specimen was subjected to slow

cycles (_ 1 cycle rain-1) of constant plastic strain increasing from
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Fig. 3-9 The fYacture surface of t h e  as-received mater ia l .  X250. 

Fig.  3-10 The f r ac tu re  surface of t he  mater ia l  which haidbeen 
s t r a i n  cycled pr ior  t o  t e s t i n g .  X500. 
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Table 3-1

THE EFFECT OF SPECIMEN CONDITION ON THE

STRESS AND STRAIN AT FRACTURE

F-B2028-1

Specimen Condition

As-received

Vacuumannealed at 750°C

Annealed in a_gon at 850°C

Vacuum annealed and

sprayed wlth oarbo_um powder

Annealed in a_gon, copper plated, and
re-annealed in argon at 8500C

Annealed in Argon, gold film eva@orated,
re-annealed in argon at 850°C

As-received, then strain-cycled successively

at plastic strain amplitudes of + 0.10%,
+_o.86_,and + 1.5%

Annealed in argon at 850°0, then strain

cycled as above

Annealed in argon at 850°0, and
coated with %1_seline'

Stress at Fracture

K6 mm-2

29.5

27.0

27.5

25.0 Batch A
37.0BatchB

26.0

Strain at Fracture

m -2

1.25

2.45

2.40

2.1+5
1.85

1.85

27.0 2.4

26.5 0.70

36.0 0.75

28.OBatch A 2.90
36.5Batch B 2.30

¢ = + 0.3% to +_ 1.5% with an intermediate strain-amplitude change at
p -
e = 0.86%, Figure 3-8. In the subsequent tensile test, the specimens
P
exhibited a high initial rate of hardening which then dropped to a low

value. Each change in strain amplitude produced a sharp increase in peak

stress which was followed rapidly by a saturation in the hardening rate.

The fracture stress was not significantly different to that of the other

specimens of the same batch, while the strain at fracture of 0.75% was

smaller than that of the specimens which had not been cycled. Strain

cycling of the as-received beryllium produced similar effects, Figure 3-5.

(b) Surface Spraying with Carborundum Particles: In the first

experiment, the specimen was annealed in vacuum at 850°C and then sprayed

with carborundum powder (average particle size 183W) from a height of l".

The overall effect on the stress-strain curve, compared with the annealed

condition, was small, Figure 3-5. On the assumption that this treatment

.produced only a smmll change in the number of mobile dislocations at the

surface, a second annealed specimen (batch B) was sprayed with carborundum

powder (average particle size _83_) from a gun using compressed argon.
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Fig. 3-ll Surface o f  s p i c h e n  sprayed with carborundum p a r t i c l e s  
under pressure.  X375. 

- 

This treatment was s u f f i c i e n t  t o  proauce l i n e  sur lace  indenta t ions ,  

Figure 3-U; although t h e  flow s t r e s s  was s i g n i f i c a n t l y  g r e a t e r  than t h a t  

of t h e  annealed material, t h e  s t r a i n  a t  f r a c t u r e  decreased from 2.45% t o  

1.85%, F i g n e  3-6. 

( e )  Grease Coatings: I n  order t o  determine whether beryll ium 

i s  suscept ib le  t o  atmospheric corrosion during deformation, two annealed 

specimens (from batches A and B) were coated with 'vasel ine '  grease and 

expected t o  reduce t h e  p a r t i a l  p ressme of oxygen a t  t h e  surface of t h e  

metal  t o  l e s s  t han  

propagation of s m a l l  cracks durirg t h e  time of t e s t ,  provided t h e  metal  

i s  prone t o  corrosion by atinospherlc gases. 

pul led t o  f r ac tu re .  According t o  Snowden (12) , t h i s  form of coat ing i s  

t o r r ;  i n  turn, this w i l l  a f f e c t  t h e  r a t e  of 

The s t r e s s - s t r a in  curves t o  f r a c t m e  a r e  given i n  Figure 3-7. 
S t r a i n  at f r a c t u r e  f o r  t h e  grease coated specimen from batch R was 2% 

higher  than  t h a t  o f  uncoated armeded n a t e r i a l .  

from batch B had a d u c t i 2 i t y  less t h m  t h e  specinen from batch A ,  but  was 

appreciably more d u c t i l e  than the  o the r  specimens from t h e  same batch. 

The coated specimen 
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Cd) Metal Coatings: The stress-strain curve for the copper-plated

specimen followed closely that of the as-annealed material except that
fracture occurred at a lower strain, Figure 3-5. The influence of an

evaporated gold film on the stress and strain at fracture was determined
after the coated specimenhad been annealed at 850°C. As in the case of

electrodeposited copper, the stress-strain curve was very similar to that
of uncoated beryllium in the annealed condition, Figure 3-6.

(iii) Electron Microscope Observations of Dislocations and Precipitates

Micrographs of the tensile strained as-received beryllium reveal

numerousprecipitates of irregular and sometimeshexagonal shape, with an
O

average diameter _ 2000A. These precipitates tend to lie along grain

or subgrain boundaries. The dislocation substructure is markedly irregular,

but is characterized by small regions % l_ in diameter which give rise to

phase contrast with respect to the grain lattice, Figure 3-12. These regions

are o_ten seen to be bordered by bands of irregular dislocations. Dislocation

tangling is observed, and in some areas, long straight dislocations are seen

to terminate at grain boundaries, Figure 3-13. Sharp kinks and dislocations

drawn out into dipoles are also visible.

A similar dislocation substructure and distribution of precipitates

is observed in the specimen which had been strain-cycled before tensile

straining, low angle boundaries are present where dislocations appear in

sharp contrast at specific areas of the micrograph, but which fade out at

others, Figure 3-1A. Regions with tangled dislocations and prismatic

loops are present as well as areas showing only short isolated dislocations,

Figures 3-15 and 3-16.

The dislocation configuration in annealed and deformed beryllium

is illustrated in Figure 3-17. In the micrograph, the plane of the transmission

foil is perpendicular to the tensile axis. Mar_ parallel dislocations appear

in pairs of opposite sign, a fact deduced from their contrast effects. On

the basis of comparison with observations on single crystals, it is assumed

that these dislocations have a predominantly edge character. In areas such

-as that illustrated in Figure 3-17, the dislocation density approaches

1.5 x lOlO cm.cm -3. The appearance of long parallel dislocations is restricted
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Fig.  3-12 Dislocat ion configmations in t e n s i l e  s t r a i n e d  as-received 
b e r y l l i m ,  40,000: 1 

Fig. 3-13 Tensile s t r e ined  as-received b e r y i l i m .  Long s t r a i g h t  
d i s loca t ions  terrrixating a t  a subboundary . 
d i s l o c a t i o n s  are  arrowed. 40,000: 1 

Kinked 
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Fig .  3-14 Low angle boundaries (arrowed) and small regions giving 
r i s e  t o  cont ras t  e f f ec t s .  
t e n s i l e  straining. 40,000: 1 

Specimen strain-cycled p r i o r  t o  

Fig.  3-15 Dislocat ion tangles m d  d i s l o c a t i o n  loops (arrowed) . 
S p s c h e n  strain-cycled p r i o r  t o  t e n s i l e  s t r a b i n g .  40,000: 1 
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Fig. 3-16 Short i s o l a t e d  d is loca t ions  i n  specinen strain-cycied p r i o r  
t o  t e n s i l e  straining. 40,000: 1 
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Fig. 3-17 Long p a r a l l e l  dis locat ion-pairs  in annealed and deformed 
bery l l iux .  40,003: 1 
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t o  specimens having had a p r i o r  araeal .  The pinning of  d i s loca t ions  (and 

t h e  associated increase  i n  flow s t r e s s )  appears t o  be l e s s  e f f e c t i v e  i n  
t h e s e  areas .  

Figure 3-18; t hese  may have fomed during t h e  annealing process. T i l t i n g  of 

t h e  f o i l  t o  operate  var ious reflections serves  t o  i d e n t i f y  a l l  t h r e e  Burgers 

vec to r s  o f  t h e  type  <llzo>. 
copper-plated and annealed specimen was similar t o  t h a t  of t h e  deformed 

unplated and annealed specimen. 

Low angle boundaries a r e  present i n  t h e  annealed beryllium, 

The d is loca t ion  substructure  i n  t h e  deformed 

Fig.  3-18 Rows of d i s loca t ions  making low angle boundaries (arrowed) 
in annealed beryllium. 40,000: 1 

DISCUSSION 

(i) Surface Treatment and Mechanical Proper t ies  

The primary concern i n  t h i s  study has been with t h e  inf luence 

of t h e  surface condi t ion on t h e  buLk mechanical p rope r t i e s  of  beryllium. 

From t h e  i n i t i a l  s e r i e s  of  experiments, it would appear t h a t  no marked 

changes i n  mechanical behavior a r e  brought about, r e l a t i v e  t o  t h a t  of t h e  

annealed polycrys ta l l ine  QW-1150 b e r y l l i u m  However, any i n t e r p r e t z t i o n  
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of the present results must, of necessity, be of a tentative nature since
a m_m number of specimens was tested in each condition. Further, the

many variables associated with each surface treatment have not been examined

in detail. For e_ample, the effectiveness of an evaporated or electro-

deposited layer is dependent on the surface preparation and the degree of

cleanliness; it may also be necessary to produce a solid solution alloy

with the metal layer at the specimen surface by the appropriate annealing

treatments. The twofold increase in ductility brought about by annealing

of the hot-pressed beryllium is ascribed to a rearrangement and a decrease

in the number of dislocations.

The most significant change in behavior is brought about by a

'vaseline' grease coating. The presence of such a surface coating on

annealed QMV-N50 beryllium increased the ductility by a factor _ 2.3 compared

with the uncoated as-received condition. This is considered to be an area

worthy of further examination.

(ii) Micro strain Behavior

The frictional stress cf resisting the motion of dislocations in
--2

the annealed material is __1.2 Kg mm , and is relatively insensitive to

prestrain and prior surface treatment. This level of frictional stress is

in reasonable agreement with that recently reported by Bonfield and Li_13)r_

-2
for annealed QMV-NSO Beryllium, namely af in the range 0.3 Kg mm to

1.1 Kg mm-2 for prestrains up to 5 x 10-5. It is impossible to say if the

current frictional stress values are significantly higher than those of

Bonfield and Li. On the one hand, differences in heat treatment will affect

the frictional stress through differences in dislocation substructure and/or

impurity distribution. However, it has to be remembered that significant

variations in mechanical behavior are found from batch to batch of QMV-N50

Beryllium, and these may be sufficiently large as to mask any true effect.

These levels for the frictional stress in polycrystalline

beryllium are comparable with those reported for several other metals.

Typical frictional stresses for single crystal copper (l_) aluminum (lO)

molybdenum(15) -2 and 0.2 Kg mm -2_nd are O.lO Kg _n -2, 0.035 Kg mm ,

respectively; for polycrystalline zone-refined iron (16) the value is 2.1 Kg nm -2.
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i

Whereas the frictional stress relates to the initiation of dislocation

motion, the microscopic yield stress represents a later stage of deformation

at which some dislocations have moved relatively large distances within

grains, in order to produce strains >_ 2 x l0-6. In the annealed beryllium,

the frictional stress is _ 1.2 Kg _n -2 while the microscopic yield stress (at

a strain of 2 x l0-6) is _ 1.7 Kg _n -2. The microscopic yield stress of the

-2
as-received hot pressed beryllium is 8 Kg mm , the higher stress level

being attributed to the higher background density of dislocations which

cause an increased resistance to the motion of glide dislocations.

(iii) Transmission Electron Microscopy

From the limited number of observations made it is difficult

to draw conclusions as to the specific dislocation pattern characteristic

of a given treatment. These and earlier investigations on beryllium serve

to show that the distribution of dislocations is extremely inhomogeneous.

Furthermore, since electron diffraction patterns were not available for the

foils studied, the crystallographic orientation of the individual grains

is not known. The marked differences in dislocations substructure from

grain to grain may simply be due to differences in orientation. The long

straight dislocations are attributed to a/3 Fll_O] (O001) glide systems;

a series of short isolated dislocations lying in one main direction would

correspond to an equivalent glide system, with the basal slip plane and

slip direction inclined to the plane of the foil. Brittle fracture in

beryllium is believed to be associated with basal plane cleavage due to

bend plane splitting (17). The presence of groups of relatively long

dislocation segments, and their interaction with sub-boundaries and

inclusions, may be a manifestation of the initiation of bend plane splitting.

SUMMARY

(a) Surface damage introduced by sprinkling or cyclic loading, and

surface coatings of grease, electroplated or evaporated metal, produce only

slight changes in the stress-strain curve relative to that of the annealed

material.
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(b) The frictional stress resisting the movement of

dislocations is 1.2 kg. mm -2. Prestrain and surface treatment do

not affect the level of the frictional stress.

(c) The distribution of the dislocations is extremely inhomo-

geneous. Prominent features include subboundaries, dipoles, groups

of dislocations confined to one slip plane, heavily jogged dislocations,

and dislocations anchored at inclusions in the matrix.
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APPENDIXA

GEDWTHOFBERYLLIUMSINGLECRYSTALS

The apparatus used to produce single crystals of beryllium
(Spangler et al) (1) is shownin Figure A1. The beryllium bar to be made

into a single crystal is gripped by a titanium chuck below a beryllium

gettering bar, and the assembly is suspendedfrom a hook at the top of the

inner vycor or quartz enclosure tube. The entire assembly is supported
at the bottom by a freely moving carriage held in place with a permanent

magnet. A pyrex water jacket surrounds the quartz tube. Melting is

accomplished in a pure argon atmosphereby induction heating: a narrow
molten zone is carried along the bar at a rate of 1/2" per hour by moving

the apparatus shownin Figure A1 while the induction coil remains stationary.
The direction of travel of the molten zone is from top to bottom to take

advantage of gravity segregation, since almost all impurities in beryllium,

including BeO, are more dense than beryllium. Directed gas flow is necessary
within the loop to maintain visibility of the molten zone. This is achieved

in this system by cooling the gas in the down-leg by a dry ice and alcohol
mixture.

The system pictured in Figure A1 was evacuated to a pressure of
approximately lO-6 m Hg, and filled with argon to slightly less than one

atmosphere and hermetically sealed. The argon atmospherewithin the glass

enclosure was purified by first heating the central titanium chuck to about

900°C, and by then maintaining a molten zone in the beryllium gettering bar.

Normal_, the orientations of single crystals grown from the melt are such

that the (O001) plane is closely parallel with the growth direction.

Specific orientations are obtained by mounting a seed single crystal having

the desired orientation at the top chuck.

_(1)G.E. Spangler, M. Herman, and E. J. Arndt, Dept. of Navy, Bureau of

Naval Weapons, Contract W61-0221-d(1961).
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Fig. AI - Schematic Representation of the Apparatus used to Grow

Beryllium Single Crystals by the Vertical Floating-Zone
Technique.
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APPENDIXB

PREPARATIONOF ELECTRONMICROSCOPESPECIMENS

Thin foils of beryllium suitable for observation in transmission

in the electron microscope must contain an area whose thickness is less than
o

_OOOA. The thickness of sections cut by spark machining from polycrystalline

and single crystal material was reduced from 0.5 mm by electro-polishing,

using the techniques developed by WiLhelm (1), Strutt _2),"_ and Meakin (3). The

Knuth system of electro-polishing (1) is depicted by Figure B1. The

specimen is mounted in the plastic shield having a 1 mm diameter central

hole. Fresh electrolyte is supplied to the surface being polished by the

pump. The specimen is first polished on one side to create an indentation

at its center. The specimen is then inverted and electro-polishing is

continued until a perforation is observed under low magnification at the

base of the depression. The polishing current is turned off and the specimen

is removed from the apparatus and washed. The thin area examined in transmission

is around the edge of this perforation. The composition of the electro-polishing

solution used is:

300 g Cupric nitrate

900 ml Methanol

30 ml Nitric acid

Either a copper or stainless steel cathode is used at 50 volts potential.

More recently, an electrolyte consi_ing of 50 parts ethylene

glycol, 5 parts concentrated nitric acid, 1 part concentrated sulphuric acid,

and I part concentrated hydrochloric acid has been used. This results in a

shorter preparation time, and it is not necessary to use the Knuth arrangement.

Details of the mode of electrothinning are given by Strutt (2) and Meakin (3) .
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APPENDIX C

HIGH RESOLUTION DARK FIELD MICROSCOPY USING A

PHILIPS lOOB ELECTRON MICROSCOPE*

ABSTRACT

A simple modification to a Philips IOOB

electron microscope makes possible the production
of dark field images without any loss of resolution.

The method utilizes electrical tilting of the

primary beam and permits rapid alteration between

bright and dark field viewing.

INTRODUCTION

The full application of the kinematic and dynamic theories of

electron diffraction to thin foil microscopy is only possible if high

resolution dark field micrographs are available. Dark field imagirg

without loss of resolution is accomplished I by inclining the illuminating

beam so that a particular transmitted diffracted beam is parallel to the

optical axis of the microscope. Dark field images can be produced by

displacing the objective aperture but the image quality is poor due to the

aberations produced by using off-axis beams.

The Philips lOO series microscopes contain a focusing aid known

as a "wobbler". This unit consists of a pair of coils located immediately

behind the back objective pole piece. The coil nearest to the electron

source bends the beam away from the optic axis and the second coil deflects

the beam back onto the specimen thus providing an inclined illuminating beam.

When used as a wobbler the coils are activated by an A.C. current and so

the specimen is viewed using an oscillating beam. Clearly a restricted

amount of dark field operation would be possible by merely rectifying the

supply to the wobbler coils. To be able to produce a dark field image

from ar_ given diffracted beam however, it _must be possible to select as

tilt axis ar_ direction perpendicular to the optic axis. This is

_accomplished by having two sets of tilt coils mounted at right angles in

place of the uniaxial wobbler coils.

*The high resolution dark field device was designed and constructed by

J. D. Meakin and L. Cinquina, published in Rev. Sci. Inst. _ 65A, 1965.
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CONSTRUCTION

The wobbler coils are outside the vacuumand are mountedon a

plastic former which slides inside the rear section of the objective lens.
Access to, the coils is gained by splitting the column between the gun chamber
and the condenser lens. A new former for the tilt coils was machined from

brass as it was thought desirable to improve the heat dissipation from the

windings. The critical dimensions of the former are as shownin Figure C-la.

Each coil consists of two poles located on opposite sides of the electron
beamand these were woundwith #35 formvar coated wire as shownin Figure C-lb.

The former and completed windings were lacquered with transformer dope

to minimize the risk of grounding the wires to the brass. It was determined

that the coils nearest to the specimenneed to be stronger than the leading
coils and the coils were therefore woundwith llO and 70 turns/pole

respectively.

The completed former is inserted into the microscope and the

necessary electrical connections madeto the terminal block located under-
neath the condenser lens. There is ample roomto add the extra two terminal

points required. It is particularly convenient whenusing the attachment if

the coils cause the center spot to remove along horizontal and vertical directions

on the viewing screen. With the lOOBmicroscope set to image the diffraction

pattern there is a net 30° clockwise rotation between the specimenplane and

the screen. By positioning the axis of one set of coils 30° anticlockwise

from the vertical axis, as seen by the operator, the apparent axes of the tilt
are vertical and horizontal as desired.

The resistance of each coil is about 5 ohmsand the maximum

current necessary to produce tilts of about 6° is 1 amp/coil. Various power

supplies were tried and the most satisfactory proved to be a highly filtered

transisterized D.C. supply. The supply and associated switching is shown

in Figure C-2. The amountof tilt is fixed by _ and R2 which control the
voltage applied to the coils. The beamis madeto impinge on the visible

region of the specimenby adjusting the relative strength of the leading

and following coils using the potentiometer R3 and R_. Resistances R5

and R6 permit_ critical adjustment of the illumination particularly when
C2
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working with the mir/mum diameter beam. The reversing switches S2 and S3

enable the sense of the beam tilt to be changed. Finally it should be noted

that the wobbler is still available to aid in focusing. With the selector

switch in position 2, one set of coils is connected to the wobbler power

supply through the terminals 3, _ and 5 in the 'F' plug. This is the

standard position for S1 when using the microscope for bright field work.

OPERATION

The microscope is assumed to be aligned for bright field viewing

with the intermediate lens set for imagirg the diffraction pattern. A

particular diffraction spot, g, is selected for providing the dark field

image. The conversion to dark field operation is now rapidly accomplished

as follows:

l) Withdraw the objective aperture. Note location of the center spot

on the screen. Set the condenser lens for low intensity and turn the beam

tilt controls RI and R2 to minimum position.

mately mid-point position.

2) Turn on tilt power supply using S1.

Set R3 and RA at an approxi-

Increase beam tilt controls,

R1 and R2, until spot g has moved to original center spot position. If

necessary reverse direction of tilt using S2 and/or S3. Maintain uniform

illumination of the screen using _ and RA. D_Aono___tadjust the beam using

the normal beam alignment controls. Note: as the primary beam is tilted

the intensity of the diffraction spot g may diminish. To maintain the

specimen in the Bragg condition it is necessary to tilt both the specimen

and the beam around the same axis. In general a two axis goniometer stage

will be required to accomplish this.

3) To achieve critical alignment -switch off the tilt power using

S1. Replace the objective aperture and accurately align it with respect

to the center spot. Switch on the tilt supply and allow a few seconds to

stabilize. Accurately center the spot 'g' in the objective aperture using

the tilt controls. Gradually bring the condenser lens to cross-over while

maintaining equal illumination usi._ the balance controls. If necessary
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adjust the tilt to keep 'g' centered. The microscope can now be operated

at a_y magnification to give a dark field image using the selected

diffraction condition.

As dark field is achieved using entire_y electrical means the

instrument can be instantly restored to bright field viewing and there is no

associated shift in the area imaged when making the change. This is of

particular benefit when working at high magnifications. Once the tilt and

balance controls have been set for a particular diffraction spot, it is

possible to alternate between bright and dark field viewing with a few

seconds delay and only the most minor adjustments of the balance controls.

The angle of tilt available is about 6 °. This amount of tilt, for instance."

permits dark field viewing using the first eight orders of diffraction from

molybdenum.

finally it is worth noting a specific relation between the bright

and dark field image produced by the device described. In general dark

field images will be produced with the specimen exactly in the Bragg condition

as the diffracted intensity is then a maximum. For this condition the

primary beam is inclined by 2e and the diffracting planes by e to the optic

axis, where e is the Bragg angle. Call this operating reflection +g. If

the beam tilt is now switched off and the specimen not rotated the primary

beam now makes an angle -8 to the diffracting planes, i.e., the operating

condition can now be characterized by -g. A dark field-bright field pair

of micrographs can thus readily and quickly be obtained even at very high

magnifications. Interpretation of azy contrast effects must of course

take note of the change in sign of the operating reflection when going from

bright to dark field. Our experience with this device is confined to a

Philips lOOB microscope but it se_s very likely that a similar conversion

could be readily accomplished with the more refined Philips EM-200 which

also contains the wobbler focusing system.

C6



F-B2328-1 

. 

An example o f  t h e  capabi l i ty  of t h e  device i s  given in Figure C-3 
which shows s tacking f a u l t s  i n  s t a i n l e s s  s t e e l  photographed i n  ( a )  br ight-  

f i e l d  and (b) dark-field. 

Fig.  C-3 - Stacking Faul t s  i n  S ta in l e s s  S tee l .  ( a )  Bright Field.  (b) Dark 
Field.  Original  Magnification x 40,000. 

1. D. Kay, Techniques f o r  Electron Nicroscopy, p. 24, Blackwell (1961). 
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APPENDIXD

THEEFFECTOFCONCURRENTANDINDEPENDENTYIELDINGMECHANISMB
ONANEIASTICBEHAVIOR*

In calculating the friction stress from a plot of loop area against

forward plastic strain, the theory requires that extrapolation of the best
line fit at low strains (%5 x lO-5 ) passes through the origin. The analysis

presented here showsthat a high measuredvalue of the friction stress and a

positive intercept on the strain amplitude plot are related.

Supposethat there are two independent yielding mechanisms

controlled by frictional stresses T1 and T2 where T2 _ Tl" The motion
of pre-existing edges and screws would serve as a plausible example. Hysteresis

loops generated in the stress interval 2T1 < T < 2T2 lead to an energy-plastic
strain plot that extrapolates through the origin. If the stress 2T2 is

exceeded, then energy dissipation takes place against T2 as well as Tl"
The situation is illustrated in Figure D-l; it is of course likely that

dissipation against T1 will continue at the higher stresses so that the energy
balance during the forward (or reverse) half cycle is given by:

AW/2= TI _i + _2 _2 (D-l)

_i is the plastic strain contributionfrom the first process which, as

stated, is assumed to be independent of the plastic strain _2 from the

second process. For simplicity in this model we assume linear hardening

of slope m1 between 2T1 and 2_2, and slope m2 at stresses above 2_2. The

strain contribution of the first process is taken to be controlled bym 1 at

stresses _ 2_i, where ml_m 2.

*This analysis forms part of a communication prepared by A. Lawley and

J. D. Meakin, which has been accepted for publication in Acta Metallurgica.
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Under these conditions:

_l + 72 - 7o ml I
.... > l (0-2)

_i - _o m2 a

= 71 + _2 (0-3)

_I=_o + a (7- 7o )
(D-_)

_o = 2 (_2 - Tz)/ml (D-5)

Equation (D-l) can be written:

AW/2={_2-a(_2-_I )]_-(l-a) (_2-_I) _o

or AW/2 = [_2 - a (T 2 - "rl)].7- (2/5) (1 - a) (T 2 I"1)2 (]:)-7)

(D-6)

A positive intercept on the strain axis, and the correspondingly

higher friction stress, can now be seen to be the result of the onset of a

second plastic flow process. From Equation (D-7), the experimentally

determined friction stress will always be less than _2 and, depending on the

value of a, could be near to either T1 or T2. If a is small, there is a

significant change in strain hardening when the second process is initiated;

under these conditions, reasonable estimates of _2 should be obtained

experimentally. Note that for a single process, a = 1 and Equation (D-7)

reduces to

AW = 2Tf 7p_ (D-8)
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